Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

John Fawcett, Fabrizio Sicilia and Gregory A Solan*

Department of Chemistry, University of Leicester, Leicester LE1 7RH, England

Correspondence e-mail: jxf@leicester.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.027$
$w R$ factor $=0.069$
Data-to-parameter ratio $=17.2$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

trans,trans,trans-Diacetonitriledibromo-bis(4-fluoroaniline)nickel(II)

The structure of the centrosymmetric title compound, $\left[\left(4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}\right)_{2}(\mathrm{MeCN})_{2} \mathrm{NiBr}_{2}\right] \quad$ or $\quad\left[\mathrm{NiBr}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{FN}\right)_{2^{-}}\right.$ $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}$], reveals each of the pairs of bromide, acetonitrile and 4-fluoroaniline ligands arranged trans to each other with a near octahedral geometry at the Ni atom.

Comment

While fluorinated anilines, $\mathrm{C}_{6} \mathrm{~F}_{x} \mathrm{H}_{y} \mathrm{NH}_{2}(x=1$ and $y=4 ; x=2$ and $y=3 ; x=5$ and $y=0$), have been extensively used as precursors to Schiff base ligands, crystallographically characterized examples of transition metal complexes containing the bound aniline itself are rare (Padmanabhan et al., 1985; Visalakshi \& Patel, 1994).

We report here the synthesis and crystal structure of trans,trans,trans-[(4-F-C6 $\left.\left.\mathrm{H}_{4} \mathrm{NH}_{2}\right)_{2}(\mathrm{MeCN})_{2} \mathrm{NiBr}_{2}\right]$, (I). The Ni atom is located on a centre of symmetry. The geometry at the Ni atom is approximately octahedral, the largest deviation from the ideal bond angles being observed for $\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 2$ [83.79 (8) ${ }^{\circ}$]. The bond distances at nickel are: $\mathrm{Ni} 1-\mathrm{Br} 1=$ 2.5634 (3) $\AA, \mathrm{Ni} 1-\mathrm{N} 1=2.0915$ (18) \AA and $\mathrm{Ni} 1-\mathrm{N} 2=$ 2.0629 (19) \AA. Each Br atom is surrounded by H atoms with three intra- and four intermolecular $\mathrm{H} \cdots \mathrm{Br}$ distances in the range $2.58-3.25 \AA$. The structure of (I) resembles the trans disposition of ligand pairs found in trans,trans,trans$\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{MeCN})_{2} \mathrm{NiCl}_{2}\right]$ (Piggot et al., 2004).

Experimental

Under a nitrogen atmosphere, 4-fluoroaniline ($0.02 \mathrm{~g}, 0.18 \mathrm{mmol}$) was added to a solution of (DME) NiBr_{2} ($\mathrm{DME}=1,2$-dimethoxyethane) $(0.05 \mathrm{~g}, 0.16 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{ml})$ and the reaction mixture stirred for 12 h at room temperature. The volatiles were removed under reduced pressure and the residue dried overnight. Extraction of the residue into hot acetonitrile and prolonged standing

Received 19 May 2005 Accepted 27 May 2005 Online 10 June 2005
of the solution at room temperature gave pale-green crystals of the title compound suitable for single-crystal X-ray diffraction analysis ($0.02 \mathrm{~g}, 23 \%$ yield).

Crystal data

$\left[\mathrm{NiBr}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{FN}\right)_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]$	$D_{x}=1.889 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=522.87$	Mo $K \alpha$ radiation
$\begin{aligned} & \text { Monoclinic, } P 2_{1} / c \\ & a=11.4533 \text { (14) } \AA \end{aligned}$	Cell parameters from 4651 reflections
$b=12.9875$ (15) \AA	$\theta=2.4-28.8^{\circ}$
$c=6.2590$ (7) A	$\mu=5.43 \mathrm{~mm}^{-1}$
$\beta=99.191$ (2) ${ }^{\circ}$	$T=150$ (2) K
$V=919.07$ (19) \AA^{3}	Plate, pale green
$Z=2$	$0.32 \times 0.19 \times 0.09 \mathrm{~mm}$
Data collection	
Bruker APEX CCD area-detector diffractometer φ and ω scans	1995 independent reflections 1823 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.052$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$\begin{aligned} & \theta_{\max }=27.0^{\circ} \\ & h=-14 \rightarrow 14 \end{aligned}$
$T_{\text {min }}=0.315, T_{\text {max }}=0.613$	$k=-16 \rightarrow 16$
7593 measured reflections	$l=-7 \rightarrow 7$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.069$
$S=1.02$
1995 reflections
116 parameters

H -atom parameters constrained

$$
D_{x}=1.889 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$K \alpha$ radiation
Cell parameters from 4651
$\theta=2.4-28.8^{\circ}$
$\mu=5.43 \mathrm{~mm}^{-1}$
$T=150$ (2) K
Plate, pale green
$0.32 \times 0.19 \times 0.09 \mathrm{~mm}$

1995 independent reflections
1823 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=27.0^{\circ}$
$k=-16 \rightarrow 16$
$l=-7 \rightarrow 7$

H -atom parameters constrain
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0421 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.70$ e \AA^{-3}
$\Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Br}^{\mathrm{i}}$	0.92	2.71	$3.5498(19)$	152
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Br}^{\mathrm{ii}}$	0.92	2.58	$3.4789(19)$	167

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x,-y+1,-z$.
All H atoms were included in calculated positions and treated as riding, with $\mathrm{C}-\mathrm{H}=0.95-0.98$ and $\mathrm{N}-\mathrm{H}=0.92 \AA$. For methyl H atoms, $U_{\text {iso }}(\mathrm{H})$ values were set at $1.5 U_{\text {eq }}$ of the C atom and at $1.2 U_{\text {eq }}$ for all other H atoms.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine

Figure 1
The molecular structure of (I), showing the atom numbering scheme and 50% displacement ellipsoids. The molecule is located on a centre of symmetry [primed atoms are generated by $(-x, 1-y, 1-z)$].
structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The authors thank the University of Leicester for financial assistance.

References

Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Padmanabhan, V. M., Patel, R. P. \& Ranganathan, T. N. (1985). Acta Cryst. C41, 1305-1309.
Piggot, P. M. T., Hall, L. A., White, A. J. P., Williams, D. J. \& Thompson, L. K. (2004). Inorg. Chem. 43, 1167-1174.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick. G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Visalakshi, R. \& Patel, R. P. (1994). Synth. React. Inorg. Met.-Org. Chem. 24, 1043-1053.

